88 research outputs found

    The role of prostaglandin and antioxidant availability in recovery from forearm ischemia-reperfusion injury in humans

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. It is shared under the Creative Commons License Attribution-Noncommercial No Derivative 3.0 (CCBY NCND). Copyright @ Lippincott Williams & Wilkins.Background: Endothelial dysfunction, manifesting as attenuated flow-mediated dilation (FMD), is clinically important. Antioxidants may prevent this dysfunction; however, the acute effects of oral administration in humans are unknown. Low flow-mediated constriction (L-FMC), a further parameter of endothelial health, is largely unstudied and the mechanisms for this response unclear. Methods: Twelve healthy participants (five women and seven men) completed three test conditions: control; antioxidant cocktail (α-lipoic acid, vitamins C and E); and prostaglandin inhibitor ingestion (ibuprofen). Ultrasound measurements of brachial artery responses were assessed throughout 5 min of forearm ischemia and 3 min after. Subsequently, an ischemia–reperfusion injury was induced by a 20-min upper arm occlusion. Further, vascular function protocols were completed at 15, 30, and 45 min of recovery. Results: Endothelial dysfunction was evident in all conditions. FMD was attenuated at 15 min after ischemia–reperfusion injury (Pre: 6.24 ± 0.58%; Post15: 0.24 ± 0.75%; mean ± SD, P  0.05). The magnitude of L-FMC was augmented at 15 min (Pre: 1.44 ± 0.27%; Post15: 3.75 ± 1.73%; P < 0.05) and recovered by 45 min. Ibuprofen administration produced the largest constrictive response (Pre: −1.13 ± 1.71%; Post15: −5.57 ± 3.82%; time × condition interaction: P < 0.05). Conclusion: Results demonstrate ischemia–reperfusion injury causes endothelial dysfunction and acute oral antioxidant supplementation fails to reduce its magnitude. Our results also suggest that a lack of shear stress during occlusion combined with suppression of prostaglandin synthesis magnifies L-FMC, possibly due to augmented endothelin-1 expression.Society of Biolog

    Changes in non-invasive wave intensity parameters with variations of Savitzky-Golay filter settings

    Get PDF
    Ultrasound-measured waveforms, such as vessel diameter and blood flow velocity, are used to perform analysis of waves in the cardiovascular system. Wave intensity analysis is one of the tools used for this purpose. The waveforms are commonly filtered to eliminate high-frequency noise, however the filter settings affect the features of these signals and especially of their time derivatives, upon which wave intensity analysis is based. This study aims to investigate the alterations of wave intensity parameters with varying Savitzky-Golay filter settings, one of the most common smoothing algorithms used in this context. A broad spectrum of variations was observed in all the wave intensity variables. It is therefore important to always specify the filter settings applied to the signals in a wave intensity study, so that appropriate comparisons can be mad

    Local temperature-sensitive mechanisms are important mediators of limb tissue hyperemia in the heat-stressed human at rest and during small muscle mass exercise.

    Get PDF
    Limb tissue and systemic blood flow increases with heat stress, but the underlying mechanisms remain poorly understood. Here, we tested the hypothesis that heat stress-induced increases in limb tissue perfusion are primarily mediated by local temperature-sensitive mechanisms. Leg and systemic temperatures and hemodynamics were measured at rest and during incremental single-legged knee extensor exercise in 15 males exposed to 1 h of either systemic passive heat-stress with simultaneous cooling of a single leg (n=8) or isolated leg heating or cooling (n=7). Systemic heat-stress increased core, skin and heated leg blood (Tb) temperatures, cardiac output and heated leg blood flow (LBF, 0.6 ± 0.1 l.min(-1); P0.05). Increased heated leg deep tissue BF was closely related to Tb (R(2) = 0.50; P0.05), despite unchanged systemic temperatures and hemodynamics. During incremental exercise, heated LBF was consistently maintained ~ 0.6 l.min(-1) higher than that in the cooled leg (P<0.01), with LBF and vascular conductance in both legs showing a strong correlation with their respective local Tb (R(2) = 0.85 and 0.95, P<0.05). We conclude that local temperature-sensitive mechanisms are important mediators in limb tissue perfusion regulation both at rest and during small-muscle mass exercise in hyperthermic humans.The invasive study was partially funded by Gatorade Sports Science Institute, PepsiCo

    Common carotid artery diameter, blood flow velocity and wave intensity responses at rest and during exercise in young healthy humans: a reproducibility study

    Get PDF
    The aim of this study was to assess the reproducibility of non-invasive, ultrasound-derived wave intensity (WI) in humans at the common carotid artery. Common carotid artery diameter and blood velocity of 12 healthy young participants were recorded at rest and during mild cycling, to assess peak diameter, change in diameter, peak velocity, change in velocity, time derivatives, non-invasive wave speed and WI. Diameter, velocity and WI parameters were fairly reproducible. Diameter variables exhibited higher reproducibility than corresponding velocity variables (intra-class correlation coefficient [ICC] = 0.79 vs. 0.73) and lower dispersion (coefficient of variation [CV] = 5% vs. 9%). Wave speed had fair reproducibility (ICC = 0.6, CV = 16%). WI energy variables exhibited higher reproducibility than corresponding peaks (ICC = 0.78 vs. 0.74) and lower dispersion (CV = 16% vs. 18%). The majority of variables had higher ICCs and lower CVs during exercise. We conclude that non-invasive WI analysis is reliable both at rest and during exercise

    Non-invasive assessment of the common carotid artery hemodynamics with Increasing exercise workrate using wave intensity analysis

    Get PDF
    Non-invasively determined local wave speed (c) and wave intensity (WI) parameters provide insight into arterial stiffness and cardiac-vascular interactions in response to physiological perturbations. However, the effects of incremental exercise and subsequent recovery on c and WI are not fully established. We examined the changes in c and WI parameters in the common carotid artery (CCA) during exercise and recovery in 8 young healthy male athletes. Ultrasound measurements of CCA diameter (D) and blood flow velocity (U) were acquired at rest, during 5 stages of incremental exercise (up to 70% maximum workrate) and throughout 1 h of recovery and non-invasive WI analysis (DU approach) was performed. During exercise, c increased (+136%), showing increased stiffness with workrate. All peak and area of forward compression (FCW), backward compression (BCW) and forward expansion waves (FEW) increased during exercise (+452%, +700%, +900%, respectively). However, WI reflection indices and CCA resistance did not significantly change from rest to exercise. Further, wave speed and magnitude of all waves returned to baseline within 5 min of recovery, suggesting the effects of exercise in the investigated parameters of young healthy individuals were transient. In conclusion, incremental exercise was associated with an increase in local CCA stiffness and increases in all wave parameters, indicative of enhanced ventricular contractility and improved late-systolic blood flow deceleration

    Human exercise-induced circulating progenitor cell mobilization is nitric oxide-dependent and is blunted in South Asian men

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2010 American Heart Foundation.Objective— Circulating progenitor cells (CPC) have emerged as potential mediators of vascular repair. In experimental models, CPC mobilization is critically dependent on nitric oxide (NO). South Asian ethnicity is associated with reduced CPC. We assessed CPC mobilization in response to exercise in Asian men and examined the role of NO in CPC mobilization per se. Methods and Results— In 15 healthy, white European men and 15 matched South Asian men, CPC mobilization was assessed during moderate-intensity exercise. Brachial artery flow-mediated vasodilatation was used to assess NO bioavailability. To determine the role of NO in CPC mobilization, identical exercise studies were performed during intravenous separate infusions of saline, the NO synthase inhibitor l-NMMA, and norepinephrine.  Flow-mediated vasodilatation (5.8%±0.4% vs 7.9%±0.5%; P=0.002) and CPC mobilization (CD34+/KDR+ 53.2% vs 85.4%; P=0.001; CD133+/CD34+/KDR+ 48.4% vs 73.9%; P=0.05; and CD34+/CD45− 49.3% vs 78.4; P=0.006) was blunted in the South Asian group. CPC mobilization correlated with flow-mediated vasodilatation and l-NMMA significantly reduced exercise-induced CPC mobilization (CD34+/KDR+ −3.3% vs 68.4%; CD133+/CD34+/KDR+ 0.7% vs 71.4%; and CD34+/CD45− −30.5% vs 77.8%; all P<0.001). Conclusion— In humans, NO is critical for CPC mobilization in response to exercise. Reduced NO bioavailability may contribute to imbalance between vascular damage and repair mechanisms in South Asian men.British Heart Foundatio

    Moderate and heavy metabolic stress interval training improve arterial stiffness and heart rate dynamics in humans

    Get PDF
    Traditional continuous aerobic exercise training attenuates age-related increases of arterial stiffness, however, training studies have not determined whether metabolic stress impacts these favourable effects. Twenty untrained healthy participants (n = 11 heavy metabolic stress interval training, n = 9 moderate metabolic stress interval training) completed 6 weeks of moderate or heavy intensity interval training matched for total work and exercise duration. Carotid artery stiffness, blood pressure contour analysis, and linear and non-linear heart rate variability were assessed before and following training. Overall, carotid arterial stiffness was reduced (p  0.05). This study demonstrates the effectiveness of interval training at improving arterial stiffness and autonomic function, however, the metabolic stress was not a mediator of this effect. In addition, these changes were also independent of improvements in aerobic capacity, which were only induced by training that involved a high metabolic stress

    Prolonged low flow reduces reactive hyperemia and augments low flow mediated constriction in the brachial artery independent of the menstrual cycle

    Get PDF
    © 2013 Rakobowchuk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Non-invasive forearm ischemia-reperfusion injury and low flow induced vascular dysfunction models provide methods to evaluate vascular function. The role of oestrogen, an endogenous anti-oxidant on recovery from ischemia-reperfusion injury has not been evaluated nor has the impact of prolonged low flow on vascular function been established. Eight healthy women (33610 yr) attended the lab during the follicular, ovulatory and mid-luteal phases of their menstrual cycles. After 30 minutes of rest, brachial artery vascular function was assessed by ultrasound measurements of diameter changes during 5 minutes of forearm ischemia and 3 minutes after. Subsequently, a 20-minute forearm ischemia period was completed. Further, vascular function assessments were completed 15, 30 and 45 minutes into recovery. Flow-mediated dilation, lowflow-mediated constriction, and reactive hyperaemia proximal to the area of ischemia were determined. Flow-mediated dilation was reduced at 15 minutes of recovery but recovered at 30 and 45 minutes (PRE: 7.161.0%, POST15:4.560.6%, POST30:5. 560.7% POST45:5.960.4%, p,0.01). Conversely, low-flow mediated constriction increased (PRE: 21.360.4%, POST15: 23.360.6%, POST30: 22.560.5% POST45: 21.560.12%, p,0.01). Reactive hyperaemia was reduced throughout recovery (p,0.05). Data were unaffected by menstrual phase. Prolonged low flow altered vascular function and may relate as much to increased vasoconstriction as with decreased vasodilation. Reductions in anterograde shear and greater retrograde shear likely modulate the brachial artery response, but the reduced total shear also plays an important role. The data suggest substantial alterations in vascular function proximal to areas of ischemia with potential clinical implications following reperfusion.British Heart Foundation (PG/08/060/25340),a Physiological Society summer studentship to SG, and a Wellcome Trust Vacation Studentship to EP

    Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise.

    Get PDF
    Sprint interval exercise improves several health markers but the appetite and energy balance response is unknown. This study compared the effects of sprint interval and endurance exercise on appetite, energy intake and gut hormone responses. Twelve healthy males [mean (SD): age 23 (3) years, body mass index 24.2 (2.9) kg m(-2), maximum oxygen uptake 46.3 (10.2) mL kg(-1) min(-1)] completed three 8 h trials [control (CON), endurance exercise (END), sprint interval exercise (SIE)] separated by 1 week. Trials commenced upon completion of a standardised breakfast. Sixty minutes of cycling at 68.1 (4.3) % of maximum oxygen uptake was performed from 1.75-2.75 h in END. Six 30-s Wingate tests were performed from 2.25-2.75 h in SIE. Appetite ratings, acylated ghrelin and peptide YY (PYY) concentrations were measured throughout each trial. Food intake was monitored from buffet meals at 3.5 and 7 h and an overnight food bag. Appetite (P 0.05). Therefore, relative energy intake (energy intake minus the net energy expenditure of exercise) was lower in END than that in CON (15.7 %; P = 0.006) and SIE (11.5 %; P = 0.082). An acute bout of endurance exercise resulted in lower appetite perceptions in the hours after exercise than sprint interval exercise and induced a greater 24 h energy deficit due to higher energy expenditure during exercise
    • …
    corecore